# Related Rates Calculus Problem? Relevance
• let constant rate = c

dV/dt = c - 6400

2r/h = 6/8

∴ r = ⅜h

Volume and volumetric rate

V = ⅓πr²h

V = ⅓π(⅜h)²(h)

V = 3πh³/64

dV/dt = ( 9πh²/64 )dh/dt

c - 6400 = ( 9πh²/64 )dh/dt

c - 6400 = ( 9π(500)²/64 )(18)

c = ( 9π(500)²/64 )(18) + 6400

c = 1994439 cm³/min

• Log in to reply to the answers
• Everything is measured in cm

dV/dt = x - 6400

V = (pi/3) * r^2 * h

r = 300 when h = 800 and r = 0 when h = 0.  r = (3/8) * h

h = 500 , dh/dt = 18

V = (pi/3) * r^2 * h

V = (pi/3) * ((3/8) * h)^2 * h

V = (pi/3) * (9/64) * h^3

V = (3pi/64) * h^3

dV/dt = (9pi/64) * h^2 * dh/dt

x - 6400 = (9pi/64) * 500^2 * 18

x = 6400 + (9pi/64) * 500^2 * 18

x = 6400 + (9pi/64) * 5^2 * 100^2 * 2 * 9

x = 6400 + (9pi/64) * 5^2 * (2^2 * 5^2)^2 * 2 * 9

x = 6400 + (9pi/64) * 25 * 25^2 * 2^5 * 9

x = 6400 + (9pi/2) * 25^3 * 9

x = (12800 + 9 * 9 * 25^3 * pi) / 2

x = (12800 + 9 * 5^3 * 9 * 5^3 * pi) / 2

x = (12800 + (9 * 125)^2 * pi) / 2

x = (12800 + 1125^2 * pi) / 2

1125^2 =>

(1000 + 125)^2 =>

1000000 + 250000 + 15625 =>

1265625

x = (12800 + 1265625 * pi) / 2

x = ‭1,994,439.1010997910337146415159816‬

1994439 cubic cm per minute, roughly

• Log in to reply to the answers